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The interaction between short internal gravity waves and a larger-scale mean 
flow in the ocean is analysed in the WKBJ approximation. The wave field 
determines the radiation-stress term in the momentum equation of the mean 
flow and a similar term in the buoyancy equation. The mean flow affects the 
propagation characteristics of the wave field. This cross-coupling is treated as 
a small perturbation. When relaxation effects within the wave field are considered, 
the mean flow induces a modulation of the wave field which is a linear functional 
of the spatial gradients of the mean current velocity. The effect that this modula- 
tion itself has on the mean flow can be reduced to the addition of diffusion terms 
to the equations for the mass and momentum balance of the mean flow. How- 
ever, there is no vertical diffusion of mass and other passive properties. The 
diffusion coefficients depend on the frequency spectrum and the relaxation time 
of the internal-wave field and can be evaluated analytically. The vertical viscosity 
coefficient is found to be v,, w 4 x lo3 cm2/s and exceeds values typically used 
in models of the general circulation by at least two orders of magnitude. 

1. Introduction 
Models of large- and meso-scale oceanographic phenomena introduce eddy- 

viscosity and eddy-diffusivity coefficients in order to simulate the interaction with 
smaller-scale fields. The basic equations are averaged over a grid scale in space and 
a corresponding interval in time. To close these averaged equations the terms 
arising from the subgrid component of the motion are approximated by diffusion 
terms. The diffusion coefficients are treated as free parameters and are adjusted 
such that the models satisfactorily reproduce the observed features of the pheno- 
menon under study. One of the main problems of large-scale oceanography is to 
understand under what conditions this closure scheme is appropriate; then, if i t  
is appropriate, one has to get independent information about the magnitude of 
the diffusion coefficients. The process we know most about is the diffusion of 
mass and other passive properties. Measuring profiles of temperature and salinity 
and the diffusion of tracers provides considerable information about the diffu- 
sivity on various scales. Similar observational evidence is lacking for the vis- 
cosity. To resolve the smaller-scale fields in numerical models is a problem which 
considerably exceeds the speed and storage capacity of present-day computers. 
The analytical evaluation of the diffusion coefficients has failed because of the 
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closure problem since the small-scale field is traditionally viewed as a strongly 
nonlinear turbulent field. However, if the small-scale field is a weakly nonlinear 
wave field, a closed set of equations can be derived rigorously using weak- 
interaction concepts (Hasselmann 1968) and an analytical evaluation of the 
eddy- or wave-induced diffusion coeficients becomes feasible. 

There is good evidence that the small-scale fluctuations in the ocean are 
largely associated with internal waves, so that weak-interaction concepts may 
indeed be applicable in the ocean. Internal waves are weakly nonlinear and their 
space and time scales are smaller than those of the large- and meso-scale motions 
in the ocean. In  order that the latter is true for the vertical co-ordinate as well, 
we are restricted to high-mode-number internal waves which have vertical 
wavelengths much smaller than the ocean depth. There is evidence from recent 
observations and theoretical studies that an appreciable part of the internal- 
wave field satisfies this condition. A survey of internal-wave observations, 
together with a frequency-wavenumber spectrum which is consistent with most 
observations, has been given by Garrett & Munk (1972, 1975). 

In  this paper we analyse theoretically the interaction between the high-mode- 
number part of the internal-wave field and a larger-scale mean flow which arises 
from the propagation of internal waves within the larger-scale mean flow. There 
are other processes by which internal waves interact with larger-scale fields 
(Muller & Olbers 1975): internal waves may be generated by low-frequency 
currents which either interact with bottom topography (Bell 1975) or break by 
shear instability. Internal waves may pass their momentum and energy to the 
mean flow by critical-layer absorption (Bretherton 1966; Jones 1967). Also, 
part of the energy lost by breaking internal waves may appear in the potential 
energy of the mean density stratification (Olbers 1976). These processes are not 
considered in this paper. 

The equations of motion for the mean and fluctuating components of the flow 
can be derived for each component separately. For a fluctuating field that is a 
linear wave field, the problem for the fluctuating field reduces to the problem 
of wave propagation in a slowly varying medium. This problem can be adequately 
treated in the WKBJ or geometric-optics approximation, yielding wave-train or 
wave-group solutions. As these wave groups propagate horizontally and verti- 
cally through physical space they slowly change their amplitudes, wavenumbers 
and frequencies, and thereby exchange momentum and energy, but not action, 
with the mean flow. The conservation of wave action has to be proved explicitly 
since Whitham’s (1965) method of the averaged Lagrangian is not applicable 
to our Eulerian analysis. In  order that the concept of propagating groups or 
slowly varying trains of internal waves is consistent, the mean flow must be 
geostrophically balanced. The internal-wave field will be regarded as a statisti- 
cally stationary and homogeneous ensemble which is completely described by its 
action-density spectrum. Its  equation of motion is the radiation-balance equa- 
tion which describes changes of the action-density spectrum along wave-group 
trajectories. The coupling with the mean flow enters through the propagation 
terms which determine these trajectories. 

The mean flow is treated deterministically. The effect that the wave field, 
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in turn, has on the mean flow is given by the divergence of the wave-induced 
fluxes in the momentum and buoyancy equations for the mean flow. These 
fluxes arise from the nonlinear terms in the basic equations and are quadratic 
forms of the wave amplitude. They can be evaluated by substituting, a t  each 
point in space, the local plane-wave solutions. The wave-induced source term 
in the potential-vorticity equation of a quasi-geostrophic mean flow is obtained 
by projecting the wave-induced momentum and buoyancy fluxes onto the 
geostrophic eigensolution. 

To solve the basic coupled equations of the problem, namely, the radiation- 
balance equation for the wave field and the mean-flow equations with the wave- 
induced fluxes, we treat the coupling as a perturbation. We assume that the 
modulation of the internal-wave field induced by the mean flow is small com- 
pared with the unperturbed state of the internal-wave field in the absence of the 
mean flow. The modulation can then be determined by a perturbation expansion 
of the radiation-balance equation. It is essential for the analysis that relaxation 
processes, i.e. irreversible-transfer and dissipation processes, exist within the 
internal-wave field. A net transfer of energy between the mean flow and the 
wave field is caused primarily by these relaxation processes. Resonant transfer 
can be disregarded since the resonance condition is difficult to satisfy for 
typical deep-ocean conditions. 

The modulation of the internal-wave field is a linear functional of the spatial 
gradients of the mean current velocity. This signature of the interaction is well 
suited for empirical tests (Frankignoul 1974, 1976). The modulation, in turn, 
affects the mean flow by adding diffusion terms to the mass and momentum 
balances for the mean flow. However, there is no vertical diffusion of buoyancy 
and other passive properties. The diffusion coefficients depend on the unper- 
turbed internal-wave field and its relaxation time. Formally, they take the 
form of non-local operators acting on the mean flow: the diffusion fluxes a t  a 
certain point in space and time depend not only on the gradient of the mean 
current velocity a t  that point, but on all gradients in a certain neighbourhood 
of that point. In  the limit of very small relaxation times (small compared with 
typical propagation times of the wave field) the diffusion operators become local 
and can be expressed as numbers, which are the usual diffusion coefficients. 
Estimates of the relaxation time from resonant wave-wave interactions (Olbers 
1976) suggest a nearly local description of the diffusion process. The diffusion 
coefficients can be evaluated analytically. Only the relaxation time and the 
well-established frequency spectrum of the internal-wave field are needed. For 
the vert;ical viscosity coefficient a value v, M 4 x 103cm2/s is found. Even with a 
possible uncertainty of a factor of 10, this value exceeds typical values used in 
numerical models by a t  least two orders of magnitude. 

2. Equations of motion 
Boussinesq approximation 

We shall consider motions with horizontal length scales which are much smaller 
than the radius of the earth and the lateral dimensions of the ocean. The ocean 
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can then be regarded as a plane rotating fluid which is of infinite horizontal 
extent, incompressible, stratified, and bounded by a free surface. The equations 
of motion and boundary conditions are given in the Boussinesq and f-plane 
approximation by 

auilat + uj au,lax, - cijfuj - bsi3 + anlax, = 0, 

aqat + uj ablaxj + iv;(X3) u, = 0, 

(2.1) 

(2.2) 

au,lax, = 0, (2.3) 

agat + U, atlax, - U, = 0, a t  X, = E(x,, z2, t ) ,  (2.4) 

U, ahlax, - u3 = 0, at X, = - h, + h(x,, x2), (2.5) 

n + ne = 0, a t  x, = ((x,, x2, t ) .  (2.6) 

Latin indices run from 1 to 3, Greek indices are 1 or 2, and cij = 1( - 1) if (i, j) is an 
even (odd) permutation of (1 ,2)  and zero otherwise. The subscript e refers to the 
equilibrium stratification, and n denotes the kinematic pressure minus the 
hydrostatic pressure rre associated with the equilibrium stratification. The 
notation is otherwise standard. 

The equilibrium stratification will be regarded as a given external field which 
is maintained by processes within the general circulation (e.g . upwelling balancing 
vertical diffusion). Superimposed on this equilibrium state are fields which 
consist of slowly varying and rapidly fluctuating parts. In  order to work out 
their interaction we reformulate the equations of motion. We describe the state 
of the system by the state vector + = (u, b, 8. The time evolution of this state 
vector is given by (2.1), (2.2) and (2.4). The pressure field n enters these equations 
only as a forced field which is determined at every time instant by the inhomo- 
geneous Laplace equation 

(2.7) 

n =  -ne a t  x3 = 6, (2.8) 

(2.9) ni anlax, = ni eij fuj + b + U, ui an,/ax, a t  x3 = - h, + h, 

with n = ( - ah/ax,, - ahlax,, 1) being the normal vector of the bottom. Equation 
(2.7) follows from the divergence of the momentum balance taking the in- 
compressibility condition into account. Equation (2 .8)  is the dynamical boundary 
condition at the surface, and (2.9) follows from the projection of the momentum 
balance onto the normal vector of the bottom taking the kinematic boundary 
condition a t  the bottom into account. 

We now consider solutions + = 4 ++' of the equations of motion that consist 
of a slowly varying mean flow $ and a rapidly fluctuating field + I .  A bar over it 
symbol denotes a space and time average over dimensions which are inter- 
mediate between the scales of the mean flow and those of the fluctuating field. 
The pressure field, as a forced field, can be decomposed into a wave-free com- 
ponent nf and a wave-induced component nw: n = nr+nw. The wave-free 
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component 71, is defined as the pressure in the absence of the fluctuating field. 
The wave-induced component can further be decomposed into a mean and a 
fluctuating part: mW = %+&. 

Equations of motion for the rnean$ow 

General form. The equations of motion for the mean flow are derived by 
averaging (2.1), (2.2) and (2.4). We disregard interactions of the mean flow 
with small-scale external fields. Hence the scales of N, and h are assumed to be 
equal to or greater than the scales of the mean flow. In  this case the equations 
of motion for the mean flow take the form (Hasselmann 1971) 

aiiJat + zi auilaxi - eij f ii, -Mi, + a71fpx{ = - a q a x , ,  

azpt + iii azpxj + N: ii3 = - aMilax,, 

(2.10) 

(2.11) 

aZJat+s,a~laXa--s3 = -aD,lax, at x3 = 5, (2.12) 
- 

- -  where 
F.. 27 = u;u[i +n,6ii 

M, = b'u; 

(mean wave-induced momentum flux), 

(mean wave-induced buoyancy flux), 

z+s. 
o", = jz dx3 u, (mean wave-induced surface mass flux). 

The coupling with the fluctuating field enters through the source terms on the 
right-hand side of the equations. The tensor -c, is also called the radiation- 
stress tensor. It consists of the Reynolds-st.ress tensor -u;ui and the mean 
wave-induced pressure G. Since we are not concerned with specific surface 
effects, we disregard the mean surface mass flux. Its applications to surface 
waves are discussed by Hasselmann (1971). The defining equation for the wave- 
free component n-, of the pressure is not obtained by any averaging operation. 
It follows directly from the definition of n, as the pressure in the absence of 
the fluctuating field, i.e. from the Laplace equation (2.7), (2.8) and (2.9) with 
the fluctuating field 9' set equal to zero. 

- 

From (2.10) and (2.11) we obtain the energy equation 

The first two terms on the right-hand side describe the energy exchange with the 
fluctuating field, The last two terms, representing the energy exchange with the 
equilibrium stratification, become negligible if the mean flow is specified to be 
quasi-geostrophic (Us = 0) and the fluctuating field is specified to be an internal- 
wave field (M, = 0). 

Quasi-geostrophic mean $ow. A quasi-geostrophic mean flow is completely 
described by its stream function 9 = f-'nf. Its equation of motion is the 
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potential-vorticity equation. In  the presence of a fluctuating field the potential- 
vorticity equation takes the form 

The mean wave-induced pressure does not contribute to the wave-induced 
source term in (2.14) since €,,a2(??;; 6,j)/ax,axj = 0. If we specify the fluctuating 
field to be an internal-wave field the vertical component M3 of the wave-induced 
buoyancy flux vanishes. The potential-vorticity equation then reduces to 

(2.15) 
a a  # = -  -- S,P 

a - a  a a  -+--- (z+uaK) ($ax, ax, a N: f z  ax, a )  %?xuaxj 
where 

(2.16) 

Similarly the energy equation (2.13) reduces to 

(2.17) 
a a  

8 .-- $* 
a, ,3axaaxj i(!i(g) + + ~ ( ~ ) ‘ ] + d i v .  f2 a# terms = --8 

As the mean flow we envisage the meso-scale eddy motion in the open ocean. 
Its geostrophic balance and its characteristic scales and amplitudes have 
been established by the Mid-Ocean Dynamics Experiment (MODE programme) 
in the western North Atlantic. Typical main thermocline values are (Robinson 
1975): horizontal velocity iih = 5 cmfs; horizontal length scale Lh = 100 km; 
vertical length scale L, = 1 km; time scale T = 50 days. 

Equations for the juctuating jield 
The equations for the fluctuating field are obtained by subtracting the equations 
for the mean flow from the equa.tions for the complete flow. For the equations 
of motion we obtain 

- a a -  a (i +zj;) u; -cij fu(i - b’6. + - r:, +u’. -u. = - - (u!u’. - u! u’.) 
a3 axi 3axi a ax, a 3 3 ’  

(2.18a) 

(2.18b) 

The interaction with the mean flow enters through the advection terms zCi aJr’faxj 
and ui @faxi. The latter are usually small because they contain derivatives of 
the slowly varying mean flow. 

The defining equation of the wave-induced pressure rw is 

nw = -re-rf at x3 = P+r, (2.19b) 

ni axi -rw = nieijfu~i-b‘+u&~-ni+2iiju:qni ax, at x, = -h,+h. ( 2 . 1 9 ~ )  
a a a 
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The fluctuating part nk enters the momentum balance of the fluctuating field, 
the mean part 

The equations of motion for the mean flow and the fluctuating field are not 
closed. The equations for the mean flow constitute the first equations of a hier- 
archy of equations which determine the time evolution of nth-order mean values. 
Because of the quadratic advection terms the equations far nth-order mean 
values always involve (n + 1)th-order mean values. The central problem is the 
closure problem, which is to approximate (n + 1)th-order mean values by lower- 
order mean values in order to close the otherwise infinite sequence of equations. 
It is well known from theories of weak and strong interactions that a rigorous 
closure is only possible if the fluctuating field is a weakly nonlinear wave field. 
In this case, the above hierarchy can be closed by the ‘Gaussian assumption’ 
(Hasselmann 1968) and a closed set of equations involving only first- and second- 
order mean values can be derived. 

the momentum balance of the mean flow. 

Internal waves in a slowly-varying meanJlow 

We now specify the fluctuating field to be a weakly nonlinear field of internal 
gravity waves propagating in a slowly varying mean flow. We derive their 
properties neglecting, for the moment, the small nonlinearities. Although there 
exist many papers on this problem, they are not directly applicable to our 
problem since they either neglect rotation or use the Lagrangian frame of 
reference. Linearizing (2.18) and (2.19) results in the traditi6nal set of equations 
for internal gravity waves modified only by the mean-flow-induced advection 
terms. Since we assumed that the scales of the mean flow differ greatly from those 
of the fluctuating field we are restricted to high-mode-number internal waves. 

The distribution of internal-wave energy over the different modes is still an 
open question. The first model of Garrett & Munk (1972) suggests that the energy 
is distributed nearly equally over the first twenty modes. The more recent model 
of Garrett & Munk (1975), which attributes most of the observed fine-structure 
to internal waves and which takes into account a larger variety of, and improve- 
ments in, measurement techniques, settles a t  a somewhat lower bandwidth. 
The most recent estimate from theIWEX array (Muller et al. 1975) again suggests 
about twenty excited modes. Also, resonant wave-wave interaction tends to 
transfer energy to high mode numbers (Olbers 1976). Hence there is sufficient 
indication that an appreciable part of the internal-wave energy is in mode 
numbers for which the vertical wavelength is small compared with the vertical 
length scale of the mean flow. Obvious exceptions to this statement are the 
internal tides (Hendry 1976; Wunsch 1976). 

The concept of well-defined normal modes for the full water column, however, 
appears to be questionable since typical vertical propagation times are com- 
parable with typical interaction times. The phases will thus be randomized 
before a mode can be formed. This suggests a description of the internal wave 
field as a superposition of wave trains or wave groups which propagate hori- 
zontally and vertically through physical space. These are plane waves when 
viewed on the scale of the wave field, but their amplitude wavenumber vector 
and frequency slowly change when viewed on the scale of the mean flow. A 
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systematic derivation of their properties is obtained by the standard methods 
of geometric optics (WKB J approximation). 

The WKBJ approximation. Formally, this consists of an asymptotic expansion 
of the solution in powers of a small parameter 6.  We suppose that the scales of 
the amplitude, wavenumber and frequency are comparable with the scales of the 
mean flow and are of order unity, whereas the wavelength and the wave period 
are O(B).  Hence we set 

(D 

(u’, b‘, &) = 2 ena(U(n), s-lW), Il(,n))exp (is-lO) + complex conjugate, (2.20) 

where the amplitude a(x, t ) ,  the amplitude factors U(”)(x, t ) ,  .Bcn)(x, t) and lP)(x, t )  
and the phase function O(x, t )  vasy on scale unity. The gradients of u’b’ and nb 
are dominated by the local frequency and wavenumber 

n=O 

w = - E-lao(x, tyat, ki = &-lao(x, t)lax,i, (2.21) 

which are O(e-l). The requirement that the lowest order represents sinusoidal 
waves in a uniform medium defined by the local values of N,, ti and b implies that 
f, N, and 6 are O(e-1) and ii is O(1). This scaling of the external parameters and 
mean-flow quantities differs from the scaling obtained when rotation is neglected 
(Bretherton 1969). Also, the restrictions on the kinematics of the mean flow 
implied by this scaling are different. Expanding the mean flow variables ac- 
cording to 00 

{ti, &.r) = &=(ti(n), €-19@), s-ln)12)), (2.22) 
n=O 

we find from the horizontal momentum balance of the mean flow that 

- eaafizp) + any)Iaxa = 0, (2.23) 

and from the vertical momentum balance that 

- 6@)+ a4O)/ax, = 0. (2.24) 

In order that the concept of propagating wave groups be a consistent one, the 
mean flow must be geostrophically balanced. Furthermore we find from the 
buoyancy equation that Ti!!’ = 0, which is slightly more restrictive than the usual 
a?i$’)/axa = 0.  For meso-scale motions in the open ocean these constraints re- 
present valid approximations. 

Local relations. The zeroth order of the WKBJ approximation determines the 
dispersion relation 

= Q(k, X, t )  = W, + kiZi, w0 = Qo(k, X, t )  = k-l(Ni k, ka +fzki)+, (2.25) 

which relates the local frequency w to the local wavenumber vector k = (kl ,  kz, kJ. 
Here wo denotes the intrinsic frequency, which is the frequency measured by an 
observer moving with the mean flow. The local amplitude factors 

(2.26) 
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determine the relative amplitudes of the field variables. The mean flow affects 
the local wave solution only through the Doppler shift term k, 2% in the dispersion 
relation. The amplitude factors are independent of the mean flow. Inertial 
oscillations (wo = f, = 0) are not affected by a quasi-geostrophic mean flow 
since%, = 0. 

Propagation equations. Changes in the position x and the wavenumber k of a 
wave group can be inferred from the propagation equations 

(2.27) 
vi = a x , p  = aiyak, = vj+ui, 
ri = dki/dt = - anlax, = r: - hi auilaxi. 

The group velocity vi and the rate of refraction ri consist of two parts, one due 
to the unperturbed frequency Qo and one to the Doppler shift k,7ii. The pro- 
pagation equations can be solved if initial values for the position and wave- 
number are given. They describe the trajectories of wave groups in the phase 
space (x, k}. The propagation equations are purely kinematical. Their derivation 
uses only the existence of a dispersion relation and the definition of w and k as 
derivatives of a phase function. It follows from (2.25) and (2.27) that 

1 

a w p t  = a q a t .  (2.28) 

The intrinsic frequency changes according to 

d w 0 p  = - ki azilaxj + anopt + ii, anojaxi. (2.29) 

The wavenumber (or frequency) of a wave group changes along its ray only if 
the dispersion relation depends explicitly on space (or time). 

Conservation of wave action. Changes in the amplitude of a wave group along 
its ray (the trmsport equations) are determined by the condition that the first 
order of the WKBJ approximation has a unique solution. The transport equations 
determine changes in both the magnitude and phase of the amplitude. Since we 
shall consider an ensemble of internal waves with randomly distributed phases, 
we are only interested in changes of the magnitude. These can be determined 
very elegantly if the equations of motion can be derived from a Lagrangian 
density using Hamilton’s principle. In  this case Whitham’s method of the 
averaged Lagrangian (Whitham 1965; Bretherton 1968) yields the conservation 
ofwave action, from which changes along rays in the magnitude of the amplitude 
can be computed. 

Our Eulerian equations of motion cannot be derived from a Lagrangian 
density. It is of course possible to study the interaction in the Lagrangian frame 
of reference, i.e. the interaction between internal waves and the Lagrangian 
mean flow (cf. Bretherton 1970). This interaction, however, differs from the 
Eulerian interaction since the effect of the wave field on the mean flow and the 
difference between the Eulerian and Lagrangian mean flows are both of quad- 
ratic order in the wave amplitude. If the Eulerian interaction is going to be 
studied, the cumbersome algebra of the first-order WKBJ approximation 
cannot be avoided. The correct result can, however, also be obtained by the 
following heuristic argument. 
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from the linearized version of (2.18), we obtain the energy equation 
From the momentum and buoyancy balances for the internal-wave field, i.e. 

a -  a 
3 ax, ax, 
- 

-iV;2b'u'.-b++6%i - N N , ~ .  (2.30) 

Substituting the values of u', b' and n; appropriate to a local plane-wave solution, 

fii = wo Re { Uio) Uio)*}, m, = wo Re {BO) Ui0)*}, q = w, Re {Bco)B(o)*}, 
(2.32) 

and E = 2aa* is the total energy density of the wave. Note that m3 = 0 since 
Bo) and 73io) are orthogonal. The action density N of a wave is defined as the 
total energy density divided by the intrinsic frequency, i.e. N = E/w, (Bretherton 
& Garrett 1968). Its  equation of motion is 

Substituting (2.31) and (2.29) into (2.33), we find 

a -  a -  a 
ax, 8% 

a a - N + - ( v , . N )  = ( f i j - k , v ~ ) - u i + N ; 2 m , - b - ~ q Z  
at ax, 

(2.34) 
For a quasi-geostrophic mean flow, i.e. for a flow with U3 = 0 and 

aZlaX, = fco8 a q a x 3 ,  

the source term on the righbhand side of (2.34) vanishes and the conservation 
of wave action is obtained: 

aNpt  + a(v, ivyax, = 0. (2.35) 

This canonical result is presumably no accident and deserves explanation in a 
general theory. With the conservation of wave action, we are within a familiar 
framework which provides simple algebraic expressions for most of the inter- 
action terms. 

The coupled system of equations 

We now generalize the results of the previous section to a statistical ensemble 
of internal waves and formulate the basic equations which describe the inter- 
action between internal waves and a, quasi-geostrophic mean flow. 

Xtatistical ensemble of internal waves. Consider a superposition of locally plane 
internal waves 

{u', b', n;} = I d3k a ( k )  {U(O)(k), Bo)(k) rI(O)(k)} exp [i(ki xi - wt)] + C.C. (2.36) 

We are interested only in average properties of the wave field. Average will be 
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defined as the average over a hypothetical ensemble of field realizations. If the 
wave field is homogeneous and stationary this average is equivalent to spatial 
or time averages. The amplitudes a ( k )  then satisfy the orthogonality conditions 

(2.37) 

where n(k)  is the action density spectrum. The angle brackets denote ensemble 
averages. Internal waves propagating in a slowly varying medium are only 
locally homogeneous and statimary. In this case the wave field can still be 
described by its action density spectrum, but this now becomes a slowly varying 
function of space and time, n = n ( k ;  x, t ) .  Its  evolution in time is governed by 
the radiation-balance equation 

an/at + vi &/axi + ri an/8ki = S[n],  (2.38) 

which follows from (2.35) and the canonical form of the propagation equations 
(2.27). We have added a source function 8 which describes the generation, 
transfer and dissipation of wave action by processes we have neglected so far 
(Muller & Olbers 1975). Resonant wave-wave interaction among internal waves 
which arise from the nonlinear terms in (2.18) presumably constitutes one of the 
major components of S (Olbers 1976). The consideration of wave-wave inter- 
action and other irreversible processes within the internal-wave field will turn 
out to be of crucial importance for our analysis. The interaction with the mean 
flow enters the radiation-balance equation through the propagation terms 
vi anlaxi and ri an/aki since vi and ri depend on the mean current velocity. This 
interaction conserves wave action. 

Wave-induced source terms. The mean wave-induced source terms in the 
equations of motion for the mean flow are quadratic forms of the wave 
amplitude. They can be expressed in terms of the action-density spectrum by 
substituting ensemble averages for space-time averages, e.g. 

(2.39) 

Explicitly we find for the source term S,  in the potential-vorticity equation 

(2.40) 
(2.15) 

Note that the source term has the canonical structure of wavenumber times 
group velocity which is expected in Lagrangian formulations. Since we are 
restricted to quasi-geostrophic mean motions, the potential-vorticity equation 
is an adequate equation to work with. However, in order to describe the inter- 
action in terms of familiar viscosity and diffusivity coefficients we will present the 
analysis for the momentum and buoyancy equations. When doing so the kine- 
matic restriction of the mean flow must be borne in mind. The source term Fij 
in the momentum equation (2.10) involves the mean wave-induced pressure G, 
which has to be determined from the Laplace equation (2.19). We shall neglect 

qi = J d3knfii, q. = J d3knmi, (2.41) 

1 (a(k)a(k’)) = 0, 

(a(k)a*(k’))  = &w,n(k)S(k-k’),  

ui (x, t )  u;(x + r, t + 7) = 4 Jd3kw,n{U$o) Uy(*)exp [ - i(ki ri - W T ) ]  + c.c.). 

saj = J d3k nk, 3. 

since it does not affect a quasi-geostrophic mean flow. Hence we have 

with fij and mi given by (2.32). 
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The radiation-balance equation and the mean-flow equation with the wave- 
induced source terms represent the closed but coupled system of equations 
which describes the interaction between a statistical ensemble of internal 
waves and a deterministic mean flow. The interaction is physically and formally 
analogous to the interaction between the thermal motion of molecules and the 
macroscopic flow treated in statistical mechanics. The radiation-balance equation 
corresponds to the Boltzmann equation, the mean-flow equations correspond 
to the macroscopic conservation laws for mass, momentum and thermal energy. 

3. Physical interpretation of the wave-induced momentum diffusion 
Internal waves propagating in a larger-scale mean flow transfer energy, 

momentum and buoyancy. In  order to understand this transfer physically, 
concepts such as wave energy and wave momentum need to be defined. The 
concept of wave energy and its flux, as already used in (2.31), provides no 
difficulty and is consistent with the general findings of Bretherton & Garrett 
(1968). The concept of wave momentum (buoyancy) and wave-induced momen- 
tum (buoyancy) flux, however, lacks a general approach, although some progress 
has been made for Lagrangian systems (cf. Bretherton 1970). It is straight- 
forward to evaluate the wave-induced momentum or buoyancy flux in terms of 
the wavenumber, frequency and square of the amplitude. The work done by these 
fluxes against the mean fields correctly describes changes in the wave energy. 
It is not, however, clear whether a mean momentum carried with the group 
velocity can be associated with wave groups, nor is it  clear what the physical 
significance of that momentum is. 

Wave momentum. In  our case the restriction to a quasi-geostrophic mean flow 
again provides us with canonical results. For a quasi-geostrophic mean flow 
only those components of the wave-induced momentum and buoyancy fluxes 
which contribute to the source term S,, in the potential-vorticity equation are 
significant. For a single wave group we find S,, = Nk,vS. If we attribute all 
wave-induced changes in the potential vorticity to the radiation stress, the 
horizontal momentum baIance of the mean flow is given by 

a- a a a 
ii ua + -(('iiu,)-€apfS axi p +--nj= ax, -- axi Saj. 

The mean momentum of the fluid can be approximated by P = p u  M p o i  since 
the residual terms represent higher-order terms in the Boussinesq expansion 
Ap/po+O with gA.p/po finite. If we decompose the horizontal momentum 
Fa = Pi  + e w i t h e  = Nk,, (3.1) takestheform 

a a -  a 
at axi ax, 
- (Pi + PE) + - {u, Pf, + ( T i j  + 3) e} - €,j fu + - 7rf = 0. 

It states that the momentum is advected with the mean velocity 0,  whereas 
the momentum Pz is advected with the group velocity v. Hence a horizontal 
momentum density 

= N k ,  (3.3) 
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can be attributed to wave groups. For the following argument it need not 
concern us how this wave momentum is embodied in the mean flow and how it is 
related to the external forces which would be required to generate the wave 
impulsively from rest (cf. Bretherton 1969; McIntyre 1973). 

Momentum $ux in a shear $ow. We assume that the internal-wave field can 
be regarded as an equilibrium state wherein external generation processes are 
balanced by relaxation processes. The latter processes are irreversible-transfer 
and dissipation processes and correspond to particle collisions in statistical 
mechanics. Their characteristic time scale, the relaxation time rR, can also be 
interpreted as the time a wave group can move freely before it is forced back 
into equilibrium by relaxation processes. Between ‘collisions’, the wave group 
is affected by the mean flow. The mean flow changes the wavenumber k,  the 
group velocity v(k) and the total momentum = N k a  but not the total action 
Jlr of a wave group. Consider a mean flow with a constant vertical shear a;ii,/ax,. 
In this case only the vertical wavenumber changes. Within a relaxation time i t  
has changed from its equilibrium value by an amount 

Ak, = - k17~az l /aX3.  (3.4) 

Here we have disregarded the refraction due to the equilibrium stratification 
N,. Hence two corresponding wave groups, one passing from above, k, = k! 2 0,  
and one passing from below, k, = - kg, through a horizontal plane cause a vertical 
flux of horizontal momentum 

3 5 3  = J l r k l v ~ ( k ! + A k 3 ) + M k l ~ 0 , (  -kg+Ak,).  (3-5) 

There is no change in the wave momentum carried by the waves, only a change 
in the vertical group velocity. The wave group coming from below is accelerated, 
the wave group coming from above decelerated. It is this asymmetric behaviour 
which causes a net momentum flux. 

Assuming that the mean flow-induced changes are small, i.e. lAk31 -4 k!, we 
find the momentum flux becomes 

$13 = - 2Mk:rR(av8/ak3) aUl/aX3,  

or F13 = - 1 d3kn(k)  k2, r,(av@k,) aU1/ax3 

if we add up all the corresponding wave groups. The flux is proportional to the 
gradient of the mean flow. The factor of proportionality defines a wave-induced 
vertical viscosity coefficient 

vu = / d 3 k n ( k )  k:rRav$/ak3 = ~ d 3 k ( o ~ - f 2 ) o ; 1  kak~k-2t3(7En(k))/ak3, (3.8) 

where we have integrated by parts and substituted wg = - (of -f2) k3/m,, k2. The 
basic structure of vv will be retained by our following, less heuristic, analysis. 

4. Perturbation expansion 
In order to solve the two basic coupled equations of the problem, the radiation- 

balance equation and the mean-flow equations, we treat the cross-coupling as a 
small perturbation. As the basic unperturbed state we consider an internal-wave 

5 1  F L Y  77 
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FIGURE 1. Intrinsic frequencies wo for various values of the equivalent mode number n. 
and Doppler shift kiGi for various values of the horizontal current velocity T i h  plotted 
against horizontal wavenumber. The equivalent mode number is related to the vertical 
wavenumber by lksl = nnNe/N0b, where No = 5.2 x 10-ss-l and b = 1.3km (Garrett & 
Munk 1972).TheexternalparametershavebeensetatNe = 2.6 x 10-ss-landf= 7 x 10-6s-1. 

field in a horizontally homogeneous, stationary, motionless and stratified ocean. 
In  order that this unperturbed internal-wave field does not induce any mean 
motion it may only exert vertical forces which can be balanced by pressure forces. 
In  the presence of a mean flow this basic state becomes modified. The mean flow 
affects the dispersion relation w = Q, +&Q where Q, is the unperturbed eigen- 
frequency in the absence of the mean flow and &Q = hi?& the Doppler shift in- 
duced by the mean flow. If most of the internal wave energy is confined to the 
first twenty modes (Garrett & Munk 1972), then, as figure 1 shows, the Doppler 
shift is small compared with the unperturbed frequency so long as the mean 
current velocity does not exceed Ti ,  M 10 cm/s. For regions with moderate mean 
currents we thus have y = I&Ql/Q, < 1. The parameter y ,  that is the ratio between 
the mean current and the phase velocity, will represent the formal expansion 
parameter for solving the radiation-balance equation. This expansion is not 
valid in regions with strong mean currents. 

The Doppler shift induces perturbations in the group velocity and in the rate 
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of refraction. The radiation-balance equation may then be written 

(=Yo + S 2 )  n = S[n], 

Po = apt + V; apx, + r9 q a k ,  

(4.1) 

(4.2) where 

is the unperturbed Liouville operator and 

is the perturbation induced by the mean flow. The dominant term of So is the 
vertical group-velocity term v: a/ax, ; the dominant term of S 2 i s  the refraction 
term k,(a5,/ax3) alalc,. Again we find SP/2Z0 = O(y) if we restrict ourselves to 
moderate mean currents. More specifically we find from the condition 

that our analysis is restricted to vertical shears 

For this estimate we have taken the characteristic values v: = 0.9cm/s, 
k, = 1.2km-l, Akv = n-lanlak, = 12km-1, and Axv = ri-lan/ax, = 1 km (cf. 
table 1). In  order to solve the radiation-balance equation we expand the action- 
density spectrum n in powers of y, 

n = do) + n(1) + n(2) + . . . . (4.6) 

Similarly we expand the source function 

S[n] = S[n(O)] + SS/Sn [n") + n(2) + . . .I, (4.7) 

neglecting for simplicity higher-order derivatives. Here SS/Sn denotes the func- 
tional derivative. Substituting these expansions into the radiation-balance 
equation we find at zeroth order 

n(0 )  = X[n(O)] , (4.8) 

which determines the unperturbed action-density spectrum do). Consistently we 
may assume that do) is stationary and horizontally homogeneous, i.e. do) = 
do)(k, x,). For such spectra the horizontal divergences of the wave-induced 
fluxes vanish: aF$$/ax, = 0, aHf'/ax, = 0. So that the vertical divergences do not 
induce any mean motion we must have al?',&?x, = 0. This requirement can be 
met by an internal-wave field which is horizontally isotropic in wavenumber 
space. Hence, as a more restrictive condition, we assume d o )  to be independent 
of the direction of the horizontal wavenumber. There are no such requirements 
for the component aPF!/ax, since it can be balanced by the hydrostatic pressure. 
The unperturbed action-density spectrum may be envisaged as the spectrum 
proposed by Garrett & Munk (1972, 1975). 

51-2 
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The first-order equation 

Po n(1) + SPn(0)  = SS/Sn [ncl)] (4.9) 

is formally solved by n(1) = -0-1[&], (4.10) 

where D = LYo - SSISn, (4.11) 

and (4.12) 

Here we have used Ti3 = 0, The interaction causes a fist-order modulation n(l) 
of the internal-wave field which is proportional to the spatial gradients of the 
mean flow. 

The second-order equation 

LYo n(2) + SPn(1) = aS/Sn [d”] (4.13) 

becomes, when the first-order solution is substituted, 

Po n(2) = SS/Sn [n(2)] + 690-1  SZn(0). (4.14) 

When this equation is averaged over space and time and the different orders 
added up, the radiation-balance equation for the averaged internal-wave field 
takes the form 

Z o E  = S[E] +S9D-l69E. (4.15) 

Here the overbar denotes a space-time average1over scales larger than the scales 
of the mean flow. Internal waves propagating in a random mean flow undergo 
secular changes described by the source term SZD-lSLY?i. This process is analog- 
ous to the Fermi heating of electrons in a random time-dependent magnetic field, 
which is described by a Fokker-Planck equation, i.e. by a diffusion equation in 
velocity space. Similarly we find a diffusion equation in wavenumber space, that 
is 

with 

a a -  
aki ak, 

S~D-~ISLZ’?~ = - Dij - n, (4.16) 

(4.17) 

if 8 9  is substituted from (4.12). 

n(l)into (2.41) for the wave-induced fluxes. These become 
The effect of the modulation n(1) on the mean flow is determined by substituting 

and are proportional to the spatial gradients of the mean current velocity. The 
factors of proportionality define wave-induced diffusion coefficients. In the 
following sections we shall explicitly determine the modulation n(l) and the 
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wave-induced diffusion coefficients. The evaluation of the Fokker-Planck term 
S9D-1SDLP?i and its implications for the energy balance of internal waves has 
been discussed in Miiller & Olbers (1975). 

5. Modulation of the internal wave field 
To determine the mean-flow-induced modulation n", we must invert the 

operator D = z0 -SS/Sn. Although the functional form of most processes which 
contribute to the source function S is known (Muller & Olbers 1975), the inversion 
of the functional derivative SS/Sn fails on account of the mathematical com- 
plexities. Nevertheless, the physical significance of SS/Sn is obvious. 

Relaxation time. The source function S can be decomposed into three major 
components : 

representing the input of action into the wave field by external forces, the 
transfer (redistribution) of action within the wave field, and the dissipation of 
wave action respectively. The source term Sin is generally independent of the 
action-density spectrum. The irreversible part of the source terms S,, and Sdiss 

may be approximated by 
S,, + S,,,, = - rE1 n, 

where T R  is the characteristic time scale of the transfer and dissipation processes. 
The radiation-balance equation then takes the form 

(5.1) = sin + -k sdisst 

( 5 4  

DLPn = S,, - rgl n. (5.3) 

Here rR determines the equilibrium state of the wave field and the relaxation 
time, i.e. the characteristic time it takes for a disturbed internal-wave field to 
return to its equilibrium state. Having this simple structure in mind we approxi- 
mate the functional derivative &S/Sn by the negative inverse of the relaxation 
time : 

SS/Sn = - rRl(k, x3). 

Here we have assumed that the relaxation time depends on the same variables 
as do). 

Estimates of ?-R are given by Olbers (1 976). Dividing the energy of the internal- 
wave field by the energy flux arising from resonant wave-wave interaction, he 
found as a characteristic value for the main thermocline 7 R  = O(200 h) and a 
depth dependence T R  oc NL1. However, this value characterizes the relaxation 
time of the overall energy level. For our analysis the characteristic decay times 
of asymmetries and anisotropies will be of relevance. These can be expected to 
be smaller. Scattering at  inhomogeneities of the density stratification (Mysak 
& Howe 1976) might provide an effective mechanism for the attenuation of 
asymmetries. It is not, however, clear from observations to what extent such 
inhomogeneities are due to persistent layers or to internal waves. There is also 
some empirical evidence for a smaller relaxation time (Frankignoul 1974, 1976). 
Nevertheless, Olbers's value may serve as an upper limit. There also exists a 
lower limit. Since we do not observe internal waves in the ocean the time scales 
of the dynamical processes that change the state of the wave field must be larger 

(5.4) 
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than the wave periods. Hence the mean value 7% of the relaxation time seems 
to be established to within one order of magnitude. As yet, however, there exists 
no definite information on the wavenumber dependence. 

General solution. The operator SS/Sn having been approximated by the 
function -7k1(k, x3) ,  the operator D can be inverted by integration along the 
characteristics. The result is 

1 

P1[Q] = dt’Q(ko(t’), xo(t’), t’) exp 1 -It: dt”~r;”kO(t”), x!(t”))) .  (5.5) 

Here xo(t‘) and ko(t’) denote the unperturbed wave-group trajectories defined by 

dx:/dt = v9, $ ( t )  = xi; dk:/dt = r;, kT(t) = ki. (5.6) 

The wave field responds to all the forcing on its past trajectories. The modulation 
n(1) is a non-local functional of the forcing term Q = - k,(adO)/alci) aGa/axi, 
non-local in time, physical space and wavenumber space. However, owing to 
relaxation processes the wave field only retraces the forcing for a relaxation 
time, that is, the lower integration limit - co may be replaced by t - T R .  

Local limit. For each of the independent variables of Q we introduce a pro- 
pagation time rp. Each of these is defined as the time it takes for a wave group 
to change its position or wavenumber by an amount equal to one of the character- 
istic space or wavenumber scales of Q .  The wavenumber scale 6f Q is given by 
the bandwidth of d o ) .  The propagation times represent the time scales of the 
unperturbed Liouville operator. In  table I we have listed the characteristic 
length scales A x  and the characteristic wavenumber scales Ak of Q .  Next to 
these, in column 2, we have listed mean values of the group velocity vo and the 
rate of refraction ro. Column 3 lists characteristic values of the corresponding 
propagation times estimated by Ax/vo and Ak/ro. 

If the relaxation time 7R is smaller than the propagation time 7p  the operator 
D-I becomes local in the corresponding variable. Having an upper limit 
7 R  = 0(200h), table 1 suggests that D-l is local in the horizontal space co- 
ordinate and in the horizontal wavenumber. Additionally D-l is local in the 
time co-ordinate since T R  < T M 50 days, T being the characteristic time scale 
of the mean flow. The operator D-l may thus be approximated by 

The characteristics and the operator D-1 are now horizontally isotropic, i.e. 
independent of the direction of the horizontal wavenumber. This will simplify 
our algebra considerably. 

If D-l is local in all variables (i.e. 1901 < rzl) we find 

D-l[Q] = 7 R Q .  (6 .8)  

The effect of a possible non-locality is more fully discussed in Miiller (1974). 
Here we only estimate its qualitative effect. 
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Characteristic scale Group velocity or rate Propagation 
of Q of refraction time 

Horizontal space Ax, = 1 O O k m  (v!) = 10cm/s 280 h 

Vertical space A x v =  i k m  (v:) = 0.9 cm/s 30h 

co-ordinate 

co -ordinate 

Horizontal (Ak,) = 0.8 km-l ($3 = 0 
wavenumber 

co 

Vertical wave- (A,%*) = 12 km-l (e) = 0.25 km-l h-l 50h 
number 

TABLE 1. Characteristic propagation times. The mean values (. . . ) have been calculated 
from the Garrett & Munk (1972) spectrum but only averaged from the 10th to the 20th 
mode. 

The eflect of non-locality. For simplicity we assume that N,, do) and 7-12 are 
independent of depth. The first-order equation (4.9) can now be solved by taking 
a Fourier transform with respect to the time and space variables since the 
wavenumber k enters the equation as a parameter only. For the Fourier com- 
ponents n(l)(k; K, a) and Q(k;  K, a) = - k, (8n(0)/8ki) iKiZa(K,  Q), (4.9) takes 
the form 

(iS;2+iKiv9+7~l)nc1)(k;K, a) = - Q ( k ; K ,  SZ) ,  (5.9) 

and is solved by 

TL(” (k ;  K, a) = - Q ( k ;  K, a) [7z1 - i( i2 + Ki V ; ) ] / [ T ~ ~  + (a + Ki w:)’]. (5.10) 

Relaxation effects induce the part which is in phase with the forcing Q(k;  K, a). 
The energy exchange between the mean flow and the wave field is determined 
by P$ 8Za/8xj = d3k fai  n(1) 8iia/8xj. Only the in-phase part of n(l) contributes to 
its mean value. A secular energy transfer between the mean flow (forcing field) 
and the internal-wave field (forced field) occurs only if the forced field is damped 
or if it  is forced in resonance. The resonance condition a + Ki v! = 0 is, however, 
difficult to satisfy for typical deep ocean conditions. The order of magnitude 
of the in-phase part of n(l) is given by 4) = D;2 Q, where 

(5.11) 

if we take (a + Ki w!)- l= 7p z 30 h and rR = 80 h. The specific value of D;; 
does not depend sensitively on the as yet unknown relaxation time 7R. Within 
the possible interval 20 h 6 

Correlation between internal-wave cross-spectra and meun-current gradients. The 
interaction with the mean flow causes a modulation of the internal-wave field 
which is both anisotropic and asymmetric in wavenumber space. These ani- 
sotropies and asymmetries are also apparent in the projections provided by the 
various measurement techniques. 

6 200 h it changes by less than a factor of 3. 
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Cross-spectra obtained from moored current meters and temperature sensors 
are defined by 

I?&) = Cij(w)-iQij(w) = d ~ ~ ~ ; ( t ) u ( i ( t + ~ ) e - ~ ~ ~ .  (5.12) 

The vertical velocity is usually inferred from temperature series and the mean 
temperature gradient. If one calculates the covariance function ui(t) u;(t + T) 
with the help of (2.39), the cross-spectral matrix becomes a weighted projection 
of the action-density spectrum onto the frequency axis 

Pij(w) = Jd3k4m(k)  w(U\" U;o)*S(w - Qo(k)) + U$"* U$o'S(~ + Q0(k))). (5.13) 

Here we have neglected the small Doppler shift term in the dispersion relation. 
In  our case the action-density spectrum is given by .n = d o )  + D-l[ka(ado)/aki) x 
aiia/axi]. Hence we expect to find correlations between the cross-spectral matrix 
and the current gradients of the mean flow. As shown in the appendix we 
specifically expect correlations bet ween 

0) c , , ~  - c,, ( 0 1 ,  aul/axl - az2/ax2, ( 5 . 1 4 ~ )  

(ii) C12(w), au,/ax, + au,/ax,, (5.14b) 

(iii) &23(@) ,  a%/aX3,  ( 5 . 1 4 ~ )  

(iv) c23(w), Q13(@), au2/ax3' (5.14d) 

All other co- and quadrature spectra, especially C,, + C,,, should not be correlated 
with the mean current gradients. A correlation with the local gradients is 
expected if relaxation effects dominate propagation effects, i.e. rR < T ~ .  Further- 
more, determination of the regression lines provides information on the relaxation 
time. 

The correlations suggested by our analysis are more specific than those 
suggested by phenomenological theories. There one closes the equations of 

(5.15) motion by 

yielding only integral relations such as 

F , ~  = - v p e n  az,/ax,, pa3 = - ~ p n  au,/ax3, 

The empirical verification of such integral relations is difficult since the inte- 
grated cross-spectra are dominated by inertial oscillations which, by any 
reasonable theory, do not effectively contribute to the wave-induced momentum 
flux. Por testing the relationships (i) and (ii), Frankignoul (1974, 1976) cal- 
culated time series of aGP/ax, and CaP(w) from MODE data. He indeed found the 
suggested correlations and calculated a relaxation time rE = O(50 h) for the 
internal-wave continuum. His studies suggest that the local limit might be 
applicable. 

There exist similar relationships for other measurement techniques. For 
cross-spectra obtained from dropped instruments (e.g. Sanford 1975) we expect 
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to  find correlations between 

(5.17) I c11(k3) - c22(lc3), au,/aX, - az2/ax2, 
c12(k3), au2/ax1 + aul/ax27 

Qa3(k3) 3 a % k  > 

if we assume do) to be vertically symmetric in wavenumber space. The correla- 
tions for towed spectra (e.g. Katz 1976) look more complicated. 

6. Wave-induced diffusion coefficients 
Diflusion operators. The reaction of the modulation n(l) on the mean flow is 

determined by substituting n(l) into (2 .41)  for the wave-induced fluxes. We obtain 

F# = -&jF,[a'ii,/ax,], ~ c , l )  = - f ~ , ~ , [ a - i ~ / a ~ ~ - j ,  (6.1) 

where the wave-induced viscosity and diffusivity tensors are 

(6.2) I . .] = - J d3kfii D-'[kl ado)/akm.. . ] ,  
Kaam[. . .] = - f - l J  d3km, D-'[kF an(O'/ak,. . .I. 

The diffusion tensors depend on the unperturbed internal-wave field do) and 
on its relaxation time rR. They act as non-local operators on the mean flow. The 
structure of the diffusion terms is considerably simplifiedif we carry out the 
integration over the direction q5 of the horizontal wavenumber using the fact that 
do) and D-l are horizontally isotropic. The integrals involved are of the form 

/02nd+ sinn 4 cosm 4, m + n < 4.  

Referring to the appendix for the details we find that the equations of motion 
for the mean flow reduce to 

(6 .36)  

( 6 . 3 ~ )  

The horizontal and vertical viscosity and horizontal diffusivity operators are 
given by Nh[. . .] = - 3 / d 3 k w 0  kg k-2(wi - f 2 )  wO2 D-l[ka 8do)/8k, ...I, ( 6 . 4 ~ )  

NJ..  .] = 8 / d3k00 k, k, k-2D-l[k, an(O)/ak,.. .], (6.4b) 

Kh[.  . .] = - 8 / d3kw0 k ,  k ,  k-2 NZ wC2 D-l[k, an(o)/ak,. . .]. ( 6 . 4 ~ )  

The momentum balance has the familiar form: a diagonal viscosity tensor in the 
horizontal momentum balance and no diffusion term in the vertical momentum 
balance. Also, there is no vertical diffusion of buoyancy and other passive 
properties. The horizontal diffusion of buoyancy is due to the vertical gradient 
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of the mean current. However, if we substitute the thermal-wind relations 
feaPaii,/ax, = aZ/ax, the usual form 

is obtained. For the potential-vorticity equation we find 

with Dh = Nh, 0, = Nvff2Kh/N,". (6.7) 
The diffusion tensor has the usual diagonal form. Note that 0, closely resembles 
our heuristic estimate (3.8) if D-1 = rB. 

Diflusion coeficients. In  the local limit the operator D-l can be approximated 
by the relaxation time TR and the diffusion operators become numbers: the usual 
diffusion coefficients vh, v, and K ~ .  Let us assume TR(k): = r$ = constant. Integrat- 
ing (6 .4)  by parts and changing from the k-representation to the (kl, k,, wo, 8)- 

representation (s = sgn k3) we find 

' h  w,(WO) 

vw 1 = %s:' dwo IWwo)\ c Sdk1dk2w0n(k , ,k2 ,w0,s ) ,  (6.8) 

w3 ;w;f2; : [  

Kh w,(wo) s=*l 

with the weighting functions 

w, $(N! - u:) w ~ ~ ( ~ N ; w ;  + N," f - 3 ~ $ ) ,  (6 .9a)  

w2 =-Lo ZN,"@-N,"f2-3w& (6.9 b)  

w i 2  N;(w$ - N: f '). ( 6 . 9 ~ )  

Here we have neglected terms O( f 2/N:) for simplicity. The diffusion coefficients 
are weighted integrals of the unperturbed action-density spectrum. The 
weighting functions depend on the frequency only. Hence no information on the 
wavenumber dependence of n(0) is needed, only its projection onto the frequency 
axis 

e(wo) = 2 J" dk, dk2 wo n(O)(k,, k,, wo, 8). (6.10) 

Figure 2 (a)  shows the weighting functions (i = 1, 2 ,  3) for Ne/f = 37.5 
(N, = 2.6 x lo-3s-1, f = 7 x lo-5s-1). The weighting functions are zero in the 
limit wo+f(k, ,  2-+ 0). Hence inertial oscillations do not contribute to the diffusion 
coefficients. The weighting function Wl is also zero in the limit wo-+Ne (k,+ 0). 
Hence buoyancy oscillations do not contribute to the horizontal diffusion of 
momentum. The weighting functions W2 and W,l are partly negative. The sign 
of the corresponding diffusion coefficients therefore depends on the shape of 
frequency spectrum e(wo).  The level, shape and depth dependence of the fre- 
quency spectrum e (oo)  are well established and can be fitted analytically by 
(Garrett & Munk 1972, 1975) 

e(wo) = Efw;', for Y = 2,  (6.11) 

S 

E(3,) = EoNe(x3)/No, E ,  = 30cm2/s2, No = 5.2 x lO-3s-l, 

if we do not consider the inertial peak. 
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K, -0.063E70, - 0.048 ET% - 0.044 E70R - 0.125 E70R(N,/f) * 
- 0.75 E T ~  

TABLE 2. Diffusion coefficients for various forms of the frequency spectrum e(w,) and for 
a relaxation time 7 ~ ( k )  proportional to the period. When the functional dependence on 
Ne/f differs from the one in (6 .12)  the lower set of values was calculated from N,lf= 37.5. 

Using this analytical fit the frequency integration in (6.8) can be carried out 
analytically. The complete integrands w ( u o ) e ( w o )  for this case are shown in 
figure 2 (b). The result of the integration is 

(6.12) 

In  order to investigate the sensitivity of this result we have listed in table 2 the 
corresponding results for modified frequency spectra and for a frequency- 
dependent relaxation time. In column 1 we have included an inertial peak 
(Garrett & Munk 1972,1975). The functional dependence on E, 7'&, and Ne/'is the 
same. The numerical factors are changed by less than a factor of 2. The result 
is also not very sensitive to the exponent r in the power law (6.11). Varying r 
within the interval 1.5 6 r < 2.5 changes the result by less than a factor of 3 
although the dependence of v, on Ne/f is slightly modified (columns 2 and 3). 
Finally column 4 lists the results for a relaxation time which is proportional to the 
period. Such a behaviour of the relaxation time can be expected on intuitive 
grounds. It is also consistent with Olbers's (1974) findings that, a t  least for high 
frequencies, monochromatic beams of internal waves are damped by resonant 
wave-wave interaction according to rBcc u i n  (0 < n < 1). Again no dramatic 
changes occur. 

We have not yet taken into account that our WKBJ approximation of the 
internal-wave field is only applicable to that part of the wave energy which is in 
high mode numbers. Denoting this fraction by q we have to replace the total 
energy density E by qE in (6.12). Furthermore, if the diffusion process is non-local 
its qualitative effect may be estimated by replacing the relaxation time 7% by 
a characteristic value of 0;;. 

The viscosity coefficients vh and v, are positive. The horizontal diffusivity is 
negative. This conflicts somewhat with our physical intuition. However, since 
we are restricted to a quasi-geostrophic mean flow the diffusion coefficients 
dh = vh and d, = v, + K,, f 2/N: in the potential-vorticity equation are relevant. 
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Both of these are positive. It should, however, be noted that the sign of the 
vertical diffusion coefficient d, depends on the shape of the frequency spectrum 
e(w,). There are positive and negative contributions to it. On our level of analysis 
there is no intrinsic reason for the diffusion coefficient to be positive. 

The Brunt+Vaisiila frequency N,, the energy density E and the relaxation time 
T~ depend on depth and determine implicitly the depth dependence of the 
viscosity coefficients. Por resonant wave-wave interaction Olbers (1976) esti- 
mated T ~ K  N;l. This together with Ecc N, yields 

vh, KhK constant, vocc N;l (6.13) 

in the local limit. However the local limit is less applicable in the deep water since 
T~ increases with depth whereas rPcc I/v:cc N, decreases with depth. A more 
realistic estimate is presumably 

(6.14) 

based on D;-,lcc N: for r?, > rR. Also, our estimates (6.12) are not applicable to 
the seasonal thermocline where trapping of the internal wave field hinders free 
propagation. 

Order of magnitude. The eddy coefficients can easily be evaluated, the two 
unknowns being r$ and q. Accepting the model of Garrett & Munk (1972) and 
assuming that our WKBJ approximation is sufficiently correct for mode num- 
bers n 3 10 implies q = 8. Taking this value and taking from (5.11) 0;; = 10 h 
yields for the main thermocline (N, = 2.6 x 10-3s-1, f = 7 x 10-5s-1) 

viff = 7 x 104cm2/s, vzff = 4 x 103cm2/s, = -2 x 104cm2/8. (6.15) 

The value of the vertical viscosity is considerably larger than the usual 1 cm2/s 
used in models of the general circulation. This discrepancy can mainly be 
ascribed to the fact that wave groups that propagate almost freely transport 
momentum over much larger distances than turbulent eddies do. 

What are the possible errors in these values T The absolute value of E and the 
bandwidth of the internal-wave field are trustworthy within a factor of 3. The 
value of D;; does not change by more than a factor of 3 within the relevant 
interval 20h < 78  < 200h. Another factor of 3 arises from the variability 
described in table 2. The least defined quantity is the fraction q of the total 
internal-wave energy for which the WKBJ approximation is correct. As regards 
the validity of the WKBJ approximation in the vertical space co-ordinate our 
value of q = 4 is conceivable. However, there exist also restrictions from the 
horizontal space co-ordinate, since the horizontal wavelength approaches infinity 
for nearly inertial oscillations. These can be disregarded by changing the lower 
integration limit in (6.8) fromf to 2f. This does not affect the vertical viscosity 
coefficient. The horizontal viscosity is reduced by a factor of 8. The horizontal 
diffusivity is reduced by a. factor of 3, but this is insignificant because K~ does not 
contribute effectively to the vertical diffusion of vorticity. This discussion sug- 
gests that an error or variability by a factor of 5 seems conceivable for the 
viscosity coefficients. The horizontal diffusivity may be more uncertain since its 
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value depends more sensitively on the validity of the WKBJ approximation for 
nearly inertial oscillations. 

Energy dissipation. The diffusion processes within the mean flow dissipate 
energy a t  a rate 

where au aii 
8 h  = - p o v i f l d d  ax, ax, = - 2 x 10-8 erg/cm,s, 

aa, au, 
O ax, ax, 

1 2 ~  = - p  veff--- = - 10-5 erg/cm,s, 

a6 a6 
ax, ax, 

ZK = - pot@ N L ~ -  - = 4 x erg/cm3s, 

if we take 

(6.16) 

(6.17a) 

(6.17b) 

(6.17~) 

au,au, t rzg)' = 5 cm s-1/100 km, (%%) = 5cms-l/lkm, 

The energy dissipation due to the vertical diffusion of momentum considerably 
exceeds the dissipation due to the horizontal diffusion of mas's and momentum. 
The dissipation rate per unit surface area may be approximated by 

d = gV x 1 km = 1 erg/cm2 s. (6.18) 

The dissipated energy appears in the internal-wave field which causes the 
diffusion. The distribution of the dissipated energy among the different wave 
numbers is given by the Fokker-Planck term (4.16) and is discussed in Muller & 
Olbers (1975). 

7. Comparison with existing observations and concepts 
Although this paper primarily aims at  the presentation of the theoretical 

analysis, the exceptionally high value of the vertical viscosity and its associated 
dissipation rate requires some comparison with existing observations and con- 
cepts. Direct measurements of eddy or wave-induced viscosity coefficients in the 
deep ocean are sparse. Such measurements require the simultaneous recording 
of the small-scale fluctuations and the large-scale gradients. Based on the cor- 
relations suggested by our analysis, Frankignoul (1974, 1976) estimated the 
horizontal viscosity vh(w) for various internal-wave frequency bands from 
MODE data. His estimates are consistent with our results. 

General circulation. Typical values of the diffusion coefficients used in models 
of the general circulation are vh = 10' cm2/s, vv = 1 cm2/s, K h  = 1O6cm2/s, 
K,  = 1 cm2/s implying Prandtl numbers Ph = vh /Kh  = 10 and P, = 1. The vertical 
diffusion coefficients are representative for most three-dimensional models. The 
horizontal coefficients may vary by two orders of magnitude depending on the 
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horizontal grid scale and the processes which are to be simulated. Our estimate 
u p  = 0(105 cm2/s) is much smaller, indicating that the internal wave field does 
not effectively contribute to the horizontal diffusion of momentum in the general 
circulation. The main contribution arises presumably from the interaction with 
meso-scale eddies. Our estimate vZff = O( lo3 cm2/s), on the contrary, suggests a 
much more effective vertical diffusion of momentum. Its detailed consequences 
can however only be inferred when included in the numerical models. The 
characteristic features of the general circulation are not changed significantly. 
The Ekman number is still much smaller than unity, Ek = v:ff/fLz = O(10-3). 
The thickness of the Ekman boundary layer, d = ( Z V ; ~ / ~ ) *  = 0(100m), is 
reasonable if our value is valid near the surface and the bottom. 

Meso-scale eddies. The nonlinear time-dependent meso-scale motion in the 
open ocean has been simulated numerically by Bretherton & Karweit (1974) and 
Rhines (1973, 1975). Both neglect the interaction with the subgrid component of 
the motion. Also, most attempts to fit observed features of meso-scale motions 
have managed without eddy or wave-induced diffusion. A noteworthy exception 
is the analysis of current profiles observed in the Polygon experiment by Fomin 
(unpublished work, 1972). Balancing the observed ageostrophy by vertical 
friction he found a vertical eddy-viscosity coefficient which is inversely propor- 
tional to  N, which changes from 10-102cm2/s in the upper part of the ocean to 
10~105cm2/s a t  great depth. Although these findings would support our esti- 
mates in the local limit it  should be noted that the complex vertical structure 
observed in the Polygon experiment is not a typical feature of meso-scale 
motions. 

The recognition of an effective vertical diffusion of momentum in the open 
ocean is presumably hindered by the fact that the vertical diffusion is masked or 
competes with other processes. Open-ocean eddies, for example, as observed in 
MODE, may well represent a balance between a continuous forcing (by baro- 
clinic instability of the general circulation, by the atmosphere or by the Gulf 
Stream) and the dissipative interaction with internal waves. The effect of the 
vertical viscosity should be more obvious when we consider the decay of Gulf 
Stream rings, which are generated by discrete events. 

Guv Stream rings. Observed decay times (e-folding times) (Fuglister 1971; 
Barrett 1971; Saunders 1971; Parker 1971; Cheney & Richardson 1976) range 
from a few months up to a year, although the ring may be recognized considerably 
longer. Similar decay times are observed for rings formed by the Kuroshio 
(Kitano 1975). Various mechanisms have been made responsible for the decay 
of the rings: heat loss to the atmosphere for anticyclonic rings (Saunders 1971); 
lateral momentum and density diffusion (Molinari 1970); vertical friction 
(Saunders 1971). Without attempting to model the actual decay of a ring, here we 
only demonstrate that decay times based on our estimates of the viscosity 
coefficients are not inconsistent with the observed decay times. Estimates of the 
decay time based on the dissipation rates or k i n  (6.17) and (6.18) and the 
kinetic energy density of the ring are misleading. Friction causes dissipation of 
kinetic energy, but this dissipation is partly balanced by an internal conversion 
of available potential energy in order to maintain the geostrophic balance. Our 
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estimate of the decay times will therefore be based on the linearized potential- 
vorticity equation 

a a  - --+--- $+++dh-+-dv- a a a a  -- 
at a ( ax,ax, a a ~x,N:~x, a f 2 a a )  8x1 ax, ax, ax, ax, ax,ax, a ) $2 ( 7 . 1 4  

2 (N: + g &) $ = o a t  x, = 0, (7 .1b)  

a2$/at ax, = 0 at X, = - h,, (7 .1~ )  

at 

which describes the damping of planetary Rossby waves. 
Assuming separable eigensolutions of the form 

$ (x,t) = $,(x,)exp(i(K,x,-~t)), n = , O ,  1 , 2 ,  ..., 

we find that the vertical eigenfunctions $,(x3) are determined-by 

i ~ 2  a a a f 2  a 
ax, N: ax, sz ax, ax, (7 .2a)  ---$n+- (-dv--K2dh) $, = -A,$,, 

$ , = O  at x3=0 ,  (7 .2b)  

( 7 . 2 ~ )  -- a’,- 0 a t  x 3 = - h o ,  
ax, 

where the eigenvalue A, = - K2-pK 1 ,  /sZ (7 .3)  

and K2 = K ,  K,. The viscosity terms represent a small correction of the operator 
on the left-hand side of (7.2 a )  as long as d, K2/sZ, dh K2Lz/QLl < f 2/N$ In this 
case the vertical eigenvalue problem can be solved by a perturbation expansion 
(Landau & Lifshitz 1962) 

$, = pp + $2’ + . . . , A, = A t )  + A$ + . . . . (7.4) 

The zero-order solution defines undamped Rossby waves with frequency 
fin = - /3Kl/[K2 + A$!’] with (A;’)-* being the Rossby radius of deformation. 
For the first-order correction of the eigenvalue we find 

h) $?- 
iK2 0 

(7 .5)  

The eigenfrequency is now obtained from (7.3) as 

The real part remains unchanged. The imaginary part defhes the characteristic 
time scale of the diffusion terms in the potential-vorticity equation. For N,2 = con- 
stant ,we have $:) ,., cos KC (x, + h,) and At’ = (Kt)2f2/Nz, where K: M N,(gh,)t 
and KC w w / h 0  for n = 1,2, . .. . Assuming additionally ah,, = dg?, = constant, 
the decay time for the energy is given by 

Tn = 1K-2 ( K 2  + A‘,O’) (K2diff + (K;)2 cZ;ff)-l. (7 .7)  
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Horizontal wavenumber (km-1) 

FIQURE 3. Decay time T, versus horizontal wavenumber K for the barotropic, and first 
and second baroclinic mode. The external parameters have been set at N, = 2.6 x s-l, 

= 7 x 10-6s-1, h, = 5 km, di' = 7 x lo4 cmz/s, P: = 4 x lo3 cma/s. 

Figure 3 shows T, as a function of K for the first 3 modes. For K = 0(2~/400km) 
typical values are a few months for the first baroclinic mode and a few years for 
the barotropic mode. For the actual modelling of the decay of a ring we must 
consider that our estimates of diff and do not apply to the seasonal thermo- 
cline. Vertical friction may however be responsible for the decay of ring energy 
in the main thermocline. 

Energetics. The interaction of the meso-scale eddy field with the internal-wave 
field provides an effective dissipation mechanism for eddy energy. In  Miiller & 
Olbers (1975) an energy balance of the internal-wave field was proposed where 
this interaction also provides the main energy source of the internal-wave field. 
The balance suggests that the energy gained by the interaction with the mean 
flow is transferred down the spectrum by wave-wave interaction and is dissi- 
pated by wave breaking. Wave breaking partly dissipates energy into smaller- 
scale turbulence and partly increases the mean potential energy by mixing. Since 
wave-wave interaction conserves energy this energy balance may be written 

" -  . ,  
" ox3 ox3 

where E is the dissipation rate to smaller-scale turbulence and K~ the equivalent 
vertical diffusivity. From tank experiments Thorpe (1973) proposed E/K,N: x 3. 

52  F L M  77 
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Taking this ratio we obtain 

P. Muller 

(7.9) 

not inconsistent with recent estimates (Roether et al. 1970; Rooth & btlund 
1972). From (7.9) we find a Prandtl number 

(7.10) 

much larger than unity, since the diffusion of momentum and mass is caused by 
different processes, the diffusion of momentum being caused by wave propaga- 
tion, the diffusion of mass by wave breaking. 

Our dissipation rate for eddy energy is also comparable with the production 
of eddy energy if we assume that an appreciable part of the energy input into 
the general circulation by the wind stress, c?~ w 1 erg s--l, is converted to 
eddy energy by baroclinic instability or some other process (see Gill et al. 1974). 
Our findings thus provide a consistent link within the concept of an energy 
cascade from the general circulation through the eddy and internal-wave field 
down to the small-scale turbulence. 

8. Conclusions 
The interaction between short internal gravity waves and large?-scale motions 

in the ocean has been analysed theoretically. The analysis was based on the 
following premises. 

(i) The small-scale field is a weakly nonlinear wave field. This enabled a 
rigorous closure of the equations of motion. 

(ii) The wave field can be described adequately in the WKBJ approximation, 
implying the concept of propagating wave groups which transport momentum, 
buoyancy and energy. The validity of this concept restricts the large-scale flow 
to be quasi-geostrophic. 

(iii) The cross-coupling between the wave field and the large-scale flow is weak. 
This assumption is not valid in regions of strong mean currents. 

(iv) There exist relaxation processes within the wave field. These had to be 
considered so that the interaction leads to a secular energy exchange between the 
two fields. 

The main results of the analysis are as follows. 
(i) The mean flow causes a modulation of the internal-wave field which is 8 

linear functional of the spatial gradients of the mean flow. This provides a 
signature of the interaction which is well suited for empirical tests. 

(ii) The wave field also undergoes secular changes described by a Pokker- 
Planck equation. These changes have not been considered in detail. 

(iii) The effect of the modulation on the mean flow reduces to a wave-induced 
diffusion of mean-flow momentum and buoyancy which is described by diffusion 
operators, or diffusion coefficients if relaxation processes are sufficiently strong. 
However, there is no vertical diffusion of buoyancy induced by propagating 
internal waves. The diffusion operators depend on the well-established frequency 
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spectrum of the internal-wave field and rather insensitively on its relaxation time. 
Estimates of the effective diffusion coefficients lead to an exceptionally high value 
of the vertical viscosity coefficient, attributed to the fact that almost freely 
propagating wave groups transport momentum more effectively than eddies do. 

The concept of nearly local diffusion operators is mainly applicable in the 
main thermocline. In  the deep water column the diffusion is presumably non-local 
and requires the simultaneous consideration of the full water column. For the 
seasonal thermocline our arguments and estimates have to be reformulated since 
part of the internal-wave field is trapped. Our estimates of the wave-induced 
viscosity coefficients are consistent with the direct estimates by Frankignoul 
(1974,1976). Other direct observational evidence is lacking. The discussion of the 
various implications did not bring forth any apparent inconsistencies, but sug- 
gested that the interaction between internal waves and meso-scale eddies might 
provide an important link between the energy input into the general circulation 
and the dissipation by small-scale processes. 

This research is a contribution of the Sonderforschungsbereich 94, Meeres- 
forschung Hamburg and MODE contribution no. 78 and was supported by the 
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panel is acknowledged. The work reported here is based on the author's Ph.D. 
thesis (University of Hamburg, 1974). The advice andguidance of K. Hasselmann 
is gratefully acknowledged. Thanks are expressed to D. J. Olbers for numerous 
helpful discussions. 

Appendix. Derivation of the diffusion operators Nh, Nu and Kh 
The wave-induced momentum flux (6.1) can also be written as 

where 

is the modulation of the cross-spectral matrix (5.13). From (2.26) we obtain 
explicitly 

Ui0) !Yo)* 3 = a2P2k-2 {P4a-4(aiaj +f2wc2€ik€jmakctm) -P2a-2(aiPj + ajPi) +Pipj 
+ i f w ~ 1 P 4 a - 4 ( € i k a k a j - € j k a k a i )  + ifwo'P2aa-'((EjkakPi-8ikakPj)}, (A 3) 

where a = (kl, k2, 0) denotes the horizontal and p = (0, 0, k3) the vertical wave- 
number vector. The integration over the direction of $ of the horizontal wave- 
number can be carried out in (A 2) since both the unperturbed action density do) 
and the operator D-l are independent of $. With 

k, ado)/akm = a-la,am ad0)/aa + a, S,, ado)/ak8, (A 4) 
52-2 
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the integrals involved are of the form 

Here aij = 1 if i = j = 1, 2 and zero otherwise. 
Collecting terms of the same structure we find 

1 a2 

q ? ( w )  = 0, Q g ( w )  = 0, (A 8 h, i) 

implying the correlations listed in (5.14). The factors of proportionality are 
given by 

(A 9 a) @:(a; - f 2, k-2w;2 D-l[k, an(o)/ak,. . .I, 
N J o )  = -1 d3kwS(w- Qo(k)) -g  k,Ic,k-2D-1[kuan((0)lak 3. . . ] ,  (A 9b) i i gk,k ,k-2f~;1D-- l [ka  M o ) / a k  ,...I. (A 9 4  

Nh( w )  

NO@) 
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For the divergence of the wave-induced momentum flux (A 1) we find 

Since Nh and N, are independent of the horizontal space co-ordinate, the second 
and fourth term in (A 10) vanish and we obtain our results (6.3) and (6.4). 

The wave-induced buoyancy flux is given by 

with 

Integrating over q5 we find 

(A 14) 
aTia 

axm 
MY' = f Kh - €jp 8 j a  sm3 = - fKh €pa aTia laX3  

with Kh[ ...I = -:S d3lzw,lNZ;kak3k-2D-l[kaan(0)/ak ,...I, (A 15) 

which completes our results (6.3) and (6.4). 
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